How poles of orthogonal rational functions affect their Christoffel functions
نویسندگان
چکیده
We show that even a relatively small number of poles of a sequence of orthogonal rational functions approaching the interval of orthogonality, can prevent their Christoffel functions from having the expected asymptotics. We also establish a sufficient condition on the rate for such asymptotics, provided the rate of approach of the poles is sufficiently slow. This provides a supplement to recent results of the authors where poles were assumed to stay away from the interval of orthogonality. Orthogonal Rational Functions, Christoffel functions AMS Classification: 42C99 The work of the first author is partially supported by the Belgian Network DYSCO (Dynamical Systems, Control and Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office. The scientific responsibility rests with the author. The first author is a Postdoctoral Fellow of the Research Foundation Flanders (FWO). Research of second author supported by NSF grant DMS1001182 and US-Israel BSF grant 2008399
منابع مشابه
Dual Szegö pairs of sequences of rational matrix-valued functions
We study certain sequences of rational matrix-valued functions with poles outside the unit circle. These sequences are recursively constructed based on a sequence of complex numbers with norm less than one and a sequence of strictly contractive matrices. We present some basic facts on the rational matrix-valued functions belonging to such kind of sequences and we will see that the validity of s...
متن کاملRational Gauss-Chebyshev quadrature formulas for complex poles outside [-1, 1]
In this paper we provide an extension of the Chebyshev orthogonal rational functions with arbitrary real poles outside [−1, 1] to arbitrary complex poles outside [−1, 1]. The zeros of these orthogonal rational functions are not necessarily real anymore. By using the related para-orthogonal functions, however, we obtain an expression for the nodes and weights for rational Gauss-Chebyshev quadrat...
متن کاملOrthogonal Rational Functions
Introduction This monograph forms an introduction to the theory of orthogonal rational functions. The simplest way to see what we mean by orthogonal rational functions is to consider them as generalizations of orthogonal polynomials. There is not much confusion about the meaning of an orthogonal polynomial sequence. One says that f n g 1 n=0 is an orthogonal polynomial sequence if n is a polyno...
متن کاملQuadratures associated with pseudo-orthogonal rational functions on the real half line with poles in [-∞, 0]
We consider a positive measure on [0,∞) and a sequence of nested spaces L0 ⊂ L1 ⊂ L2 · · · of rational functions with prescribed poles in [−∞, 0]. Let {φk}k=0, with φ0 ∈ L0 and φk ∈ Lk \ Lk−1, k = 1, 2, . . . be the associated sequence of orthogonal rational functions. The zeros of φn can be used as the nodes of a rational Gauss quadrature formula that is exact for all functions in Ln · Ln−1, a...
متن کاملOn computing rational Gauss-Chebyshev quadrature formulas
We provide an algorithm to compute the nodes and weights for Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary real poles outside [−1, 1]. Contrary to existing rational quadrature formulas, the computational effort is very low, even for extremely high degrees, and under certain conditions on the poles it can be shown that the complexity is of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 164 شماره
صفحات -
تاریخ انتشار 2012